首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   4篇
安全科学   1篇
环保管理   1篇
综合类   4篇
基础理论   4篇
污染及防治   6篇
评价与监测   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有17条查询结果,搜索用时 64 毫秒
1.
Corrosion deposits formed within drinking water distribution systems deteriorate drinking water quality and resultantly cause public health consequences. In the present study, an attempt was made to investigate the concurrent conditions of corrosion scales and the drinking water quality in selected water supply schemes (WSS) in districts Chitral, Peshawar, and Abbottabad, northern Pakistan. Characterization analyses of the corrosion by-products revealed the presence of α-FeOOH, γ-FeOOH, Fe3O4, and SiO2 as major constituents with different proportions. The constituents of all the representative XRD peaks of Peshawar WSS were found insignificant as compared to other WSS, and the reason could be the variation of source water quality. Well-crystallized particles in SEM images indicated the formation of dense oxide layer on corrosion by-products. A wider asymmetric vibration peak of SiO2 appeared only in Chitral and Abbottabad WSS, which demonstrated higher siltation in the water source. One-way ANOVA analysis showed significant variations in pH, turbidity, TDS, K, Mg, PO4, Cl, and SO4 values, which revealed that these parameters differently contributed to the source water quality. Findings from this study suggested the implementation of proper corrosion prevention measures and the establishment of international collaboration for best corrosion practices, expertise, and developing standards.  相似文献   
2.
3.
The photocatalytic degradation of dyes (Acid Chrome Blue K (ACBK) and Alizarin Red (AR)) with strong complexation ability was investigated in the presence of metal ions under visible light irradiation.It was found that, at low dye-metal ratio, the photodegradation of ACBK was markedly inhibited by the addition of high oxidative potential Cu2+.However, at high dye-metal ratio, the presence of Cu2+ enhanced the photodegradation of ACBK.The negtive effect of Cu2+ on the photodegradation of AR was observed for all dye-metal ratios.The relative chemical inert Zn2+ tended to enhance the photodegradation of both anionic dyes.The mechanism underlying the different effect of Cu2+ is discussed from the different roles of surface-adsorbed and dye-coordinated Cu2+ in the photodegradation of dyes.  相似文献   
4.
The biodegradation of dimethyl phthalate(DMP)was investigated under fermentative conditions in this study.The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography(HPLC)and liquid chromatography-mass spectrometry(LC-MS)methods.The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions,with the biodegradation rate of 0.36 mg DMP/(L·h).The results demonstrated that the DMP degradation under fermentative conditio...  相似文献   
5.
Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge.In this study,the impact of Cu~(2+)shock on a long-term nitritation operation was investigated in an air-lift reactor with selfrecirculation.Both the dynamics of microbial community and inhibition kinetics under Cu~(2+) stress were ascertained.The results showed that Cu~(2+) exerted severe inhibition on nitritation performance of an air-lift reactor(ALR) at 25 mg/L.The corresponding NH_4~+-N removal efficiency decreased to below 50%,which was mainly due to the variation of microbial community structure,especially the inhibition of nitrifiers like Nitrosomonas(the relative abundance decreased from 30% to 1% after Cu~(2+)inhibition).Kinetic parameters were obtained and compared after fitting the Haldane model.The long-term Cu~(2+) stress on the ALR aggravated the ammonium affinity and the resistance to substrate self-inhibition of the nitritation sludge,but reduced the resistance to Cu~(2+) inhibition.Furthermore,Cu~(2+)acted as uncompetitive inhibitor on nitritation process.Our results provide new insights into the nitritation characteristics under long-term Cu~(2+) stress.  相似文献   
6.
Ali  Qaisar  Yaacob  Hakimah  Parveen  Shazia  Zaini  Zaki 《The Environmentalist》2021,41(4):616-632
Environment Systems and Decisions - Regardless of known as environment-friendly entities, Islamic banks indirectly impact the environment through their clients’ engagement and slow response...  相似文献   
7.
This study demonstrates the bioremediation potential of anaerobic sludge and cattail (Typha angustifolia) for the treatment of the dye Reactive Blue 19 (RB19). The anaerobic sludge and cattails used in this study were not previously exposed to dyes or other xenobiotics. Different anaerobic sludge concentrations (30%, 50%, and 70%) were used along fixed dye concentrations at pH 8.0 and 25 °C. Subsequently, 50% sludge was selected to treat RB19 at various concentrations. The discoloration of non-hydrolyzed dye was between 70% and 85% using 50% biomass. For the hydrolyzed form of RB19, the range of decoloration was 70%–90%. Dye treatment efficiencies between 50% and 75% were observed for the two forms of the dye when treated with T. angustifolia. Overall, the anaerobic biomass at pH 8.0 showed better potential than cattails to treat RB19. The observation that non-enriched anaerobic sludge can decolorize RB19 is important because it opens up the prospects of developing anaerobic treatment systems, which can easily decolorize dyes in industrial wastewaters and also possesses potential advantages over systems using defined bacterial cultures.  相似文献   
8.
Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and wastewaters. Dimethyl phthalate (DMP) biodegradation by activated sludge cultures under nitrate-reducing conditions was investigated. Under one optimized condition, DMP was biodegraded from 102.20 mg/L to undetectable level in 56 h under anoxic conditions and its reaction fitted well with the first-order kinetics. Using the high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) analysis, mono-methyl phthalate (MMP) and phthalic acid (PA) were detected as the major intermediates of DMP biodegradation. When combined with the determination of chemical oxygen demand (CODCr) removal capacity and pH, DMP was found to be mineralized completely under anoxic conditions. The biodegradation pathway was proposed as DMP → MMP → PA → … → CO2 H2O.The molar ratio of DMP to nitrate consumed was found to be 9.0:1, which agrees well with the theoretical stoichiometric values of DMP biodegradation by nitrate-reducing bacteria. The results of the non-linear simulation showed that the optimum pH and temperature for the degradation were 7.56 and 31.4℃, respectively.  相似文献   
9.
Xiong J  He Z  Liu D  Mahmood Q  Yang X 《Chemosphere》2008,70(3):489-494
This study was the first attempt to examine the possible role of the naturally occurring rhizospheric bacteria in heavy metal removal by Sedum alfredii Hance, a terrestrial Zn/Cd hyperaccumuluator, from Zn, Cd, Cu and Pb contaminated water using antibiotic ampicillin. Moreover, the toxicity symptom in plants under heavy metal stress expressed as total chlorophyll, chlorophyll a and b content, growth inhibition, root length, and N, P contents were studied, and the possible relationship among them were also discussed. These results indicate that rhizospheric bacteria may play an important role in the uptake of N and P by S. alfredii, and consequently result in the increase of Chlorophyll content in the leaves and plant biomass due to improved photosynthesis. At the same time, root length significantly decreased under the treatment with ampicillin, which suggested that rhizospheric bacteria appeared to protect the roots against heavy metal toxicity. The Pb, Zn, Cu and Cd concentrations in the roots, stems and leaves of S. alfredii were much higher than those exposed to ampicillin. Accordingly, metal concentrations in the contaminated water without ampicillin treatment were lower than those treated with ampicillin. These results suggest that the rhizospheric bacteria may be useful in plant tolerance to heavy metal toxicity, and also accelerate the metal removal from contaminated water.  相似文献   
10.
Environmental Science and Pollution Research - Rapid population growth integrated with poor governance and urban planning is highly challenging resulting key for the selection of unsuitable...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号